skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Breen, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2025
  2. Adam, N.; Neuhold, E.; Furuta, R. (Ed.)
    Metadata is a key data source for researchers seeking to apply machine learning (ML) to the vast collections of digitized biological specimens that can be found online. Unfortunately, the associated metadata is often sparse and, at times, erroneous. This paper extends previous research conducted with the Illinois Natural History Survey (INHS) collection (7244 specimen images) that uses computational approaches to analyze image quality, and then automatically generates 22 metadata properties representing the image quality and morphological features of the specimens. In the research reported here, we demonstrate the extension of our initial work to University of the Wisconsin Zoological Museum (UWZM) collection (4155 specimen images). Further, we enhance our computational methods in four ways: (1) augmenting the training set, (2) applying contrast enhancement, (3) upscaling small objects, and (4) refining our processing logic. Together these new methods improved our overall error rates from 4.6 to 1.1%. These enhancements also allowed us to compute an additional set of 17 image-based metadata properties. The new metadata properties provide supplemental features and information that may also be used to analyze and classify the fish specimens. Examples of these new features include convex area, eccentricity, perimeter, skew, etc. The newly refined process further outperforms humans in terms of time and labor cost, as well as accuracy, providing a novel solution for leveraging digitized specimens with ML. This research demonstrates the ability of computational methods to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access repositories world-wide by generating accurate and valuable metadata for those repositories. 
    more » « less
  3. Conference Title: 2021 ACM/IEEE Joint Conference on Digital Libraries (JCDL) Conference Start Date: 2021, Sept. 27 Conference End Date: 2021, Sept. 30 Conference Location: Champaign, IL, USAMetadata are key descriptors of research data, particularly for researchers seeking to apply machine learning (ML) to the vast collections of digitized specimens. Unfortunately, the available metadata is often sparse and, at times, erroneous. Additionally, it is prohibitively expensive to address these limitations through traditional, manual means. This paper reports on research that applies machine-driven approaches to analyzing digitized fish images and extracting various important features from them. The digitized fish specimens are being analyzed as part of the Biology Guided Neural Networks (BGNN) initiative, which is developing a novel class of artificial neural networks using phylogenies and anatomy ontologies. Automatically generated metadata is crucial for identifying the high-quality images needed for the neural network's predictive analytics. Methods that combine ML and image informatics techniques allow us to rapidly enrich the existing metadata associated with the 7,244 images from the Illinois Natural History Survey (INHS) used in our study. Results show we can accurately generate many key metadata properties relevant to the BGNN project, as well as general image quality metrics (e.g. brightness and contrast). Results also show that we can accurately generate bounding boxes and segmentation masks for fish, which are needed for subsequent machine learning analyses. The automatic process outperforms humans in terms of time and accuracy, and provides a novel solution for leveraging digitized specimens in ML. This research demonstrates the ability of computational methods to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access repositories worldwide. 
    more » « less
  4. Abstract Image‐based machine learning tools are an ascendant ‘big data’ research avenue. Citizen science platforms, like iNaturalist, and museum‐led initiatives provide researchers with an abundance of data and knowledge to extract. These include extraction of metadata, species identification, and phenomic data. Ecological and evolutionary biologists are increasingly using complex, multi‐step processes on data. These processes often include machine learning techniques, often built by others, that are difficult to reuse by other members in a collaboration.We present a conceptual workflow model for machine learning applications using image data to extract biological knowledge in the emerging field of imageomics. We derive an implementation of this conceptual workflow for a specific imageomics application that adheres to FAIR principles as a formal workflow definition that allows fully automated and reproducible execution, and consists of reusable workflow components.We outline technologies and best practices for creating an automated, reusable and modular workflow, and we show how they promote the reuse of machine learning models and their adaptation for new research questions. This conceptual workflow can be adapted: it can be semi‐automated, contain different components than those presented here, or have parallel components for comparative studies.We encourage researchers—both computer scientists and biologists—to build upon this conceptual workflow that combines machine learning tools on image data to answer novel scientific questions in their respective fields. 
    more » « less